If it's not what You are looking for type in the equation solver your own equation and let us solve it.
7n^2-2n-69800=0
a = 7; b = -2; c = -69800;
Δ = b2-4ac
Δ = -22-4·7·(-69800)
Δ = 1954404
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1954404}=1398$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-2)-1398}{2*7}=\frac{-1396}{14} =-99+5/7 $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-2)+1398}{2*7}=\frac{1400}{14} =100 $
| (2t+4)3+6(-5t)-(-8)=0 | | 45+12x=250 | | 9=n/2-1 | | 1+2x-4=-3x-(-x) | | 4(8–x)+36=102–2(3x+24) | | 17/x=18/6 | | 484x^2-1=0 | | 5(-2x)=-2x+5 | | 4k-12=2-2k+6 | | -6c-2=-8-6c | | Y=x-1)2-2 | | 5x-24=9x-17 | | 3(x+4)^2-4=44 | | 3a^2=a-10 | | w+3w+4(5+w-3w)=0 | | -35=-3x | | 5=6-5x+6x | | 10(c+61/5=-102 | | 3^2x+1=81 | | x+6.2=-21 | | Y=16x^2-4x | | 3-1y=12 | | (2x-5)=(4x+7) | | 4k-12=2-(2k-6) | | 3-11•x=9+5•x | | -6k-6=-4k | | 5x+15=2x+6x=15 | | (4y/9)-(22/45)=(y/5) | | 8/9x=5/6 | | 5=3/2(2)+b | | 3x^2-49x+16=0 | | 3x+17=7x+37 |